A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions

نویسندگان

  • Guangfu Sun
  • Martin Stynes
چکیده

This paper considers a simple central difference scheme for a singularly perturbed semilinear reaction–diffusion problem, which may have multiple solutions. Asymptotic properties of solutions to this problem are discussed and analyzed. To compute accurate approximations to these solutions, we consider a piecewise equidistant mesh of Shishkin type, which contains O(N) points. On such a mesh, we prove existence of a solution to the discretization and show that it is accurate of order N−2 ln N , in the discrete maximum norm, where the constant factor in this error estimate is independent of the perturbation parameter ε and N . Numerical results are presented that verify this rate of convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniformly Convergent Method on Arbitrary Meshes for a Semilinear Convection-diffusion Problem with Discontinuous Data

This paper deals with a uniform (in a perturbation parameter) convergent difference scheme for solving a nonlinear singularly perturbed twopoint boundary value problem with discontinuous data of a convection-diffusion type. Construction of the difference scheme is based on locally exact schemes or on local Green’s functions. Uniform convergence with first order of the proposed difference scheme...

متن کامل

Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem

A semilinear reaction-diffusion equation with multiple solutions is considered in a smooth two-dimensional domain. Its diffusion parameter ε2 is arbitrarily small, which induces boundary layers. Constructing discrete suband super-solutions, we prove existence and investigate the accuracy of multiple discrete solutions on layer-adapted meshes of Bakhvalov and Shishkin types. It is shown that one...

متن کامل

Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem

A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimate.

متن کامل

A Uniformly Accurate Collocation Method for a Singularly Perturbed Problem

A semilinear singularly perturbed reaction-diffusion problem is considered and the approximate solution is given in the form of a quadratic polynomial spline. Using the collocation method on a simple piecewise equidistant mesh, an approximation almost second order uniformly accurate in small parameter is obtained. Numerical results are presented in support of this result. AMS Mathematics Subjec...

متن کامل

A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction–diffusion problems

A coupled system of two singularly perturbed linear reaction–diffusion two-point boundary value problems is examined. The leading term of each equation is multiplied by a small positive parameter, but these parameters may have different magnitudes. The solutions to the system have boundary layers that overlap and interact. The structure of these layers is analysed, and this leads to the constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996